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The induced damping in a master oscillator contributed by a set of satellite oscillators is
obtained in terms of a summation over a discrete distribution of the set. (The distribution is
with respect to the resonance frequencies of the satellite oscillators in the set. The
distribution is cast in an ascending order and is assumed to be centered about the resonance
frequency of the master oscillator in isolation). If the modal overlap parameters are less than
unity, signi"cant undulations are present in the induced damping; the less the modal overlap
parameters are compared with unity, the more prominent are the undulations. The
undulations are largely suppressed when the local modal overlap parameters exceed unity.
Moreover, appropriately averaging the undulations yields values for the induced damping
that coincide with those obtained when the modal overlap parameters exceed unity. Further,
it transpires that these common values are independent of the individual modal overlap
parameters. When the summation is replaced by an integration, the "rst order results are
undulations-free and the values, so obtained, again, coincide with those pertaining to modal
overlap parameters that exceed unity. Without de"ning the excursions in the undulations,
the transition from a discrete-to-a continuous distribution, that is implied by
a summation-to-an integration, must assume that the modal overlap parameters exceed
unity. In particular, without careful and meaningful quali"cations, it may be misleading to
assume, a priori, that the modal overlap parameters are equal to zero.
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1. INTRODUCTION

A central theme to a few publications is that a set of satellite oscillators attached to a master
oscillator contributes to the damping of the master oscillator even if all the loss factors of
the satellite oscillators in the set, are equal to zero [1}6] (cf. Figure 1). The satellite
oscillators are numerable and their resonance frequencies are distributed on both sides of
the resonance frequency of the master oscillator. The conclusion that a set of lossless
satellite oscillators can, nonetheless, contribute to the damping of a master oscillator, has
been supported by analyses that a priori assume the satellite oscillators to posses zero loss
factors [4, 5]. In contrast to the analysis presented here, some of the analyses; e.g., the
analysis in reference [5], are conducted in the time domain [3]. With respect to the material
presented in this paper, whether the analysis is conducted in the time domain or in the
frequency domain, is considered to be merely a matter of choice, notwithstanding that in the
case of a closely packed distribution of resonance frequencies of the satellite oscillators,
the relaxation times involved may be quite long. In this case, to relate the results in the
time domain to those in the frequency domain may require a long time to capture the entire
data [3].
0022-460X/01/090717#15 $35.00/0 ( 2001 Academic Press



Figure 1. Master oscillator coupled to a set of resonance frequency distributed satellite oscillators. The master
oscillator is de"ned by the mass M and the sti!ness K and the rth satellite oscillator by mass m

r
and sti!ness k

r
.

Only the master oscillator is driven, by an external drive P
e
(u), generating the response <

o
(u) in the master

oscillator and the response <
r
(u) in the rth satellite oscillator.
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In this present paper, a fundamental initial oversight that besets, all these publications is
brought to the attention of the reader. Admittedly, once that oversight is addressed, the
remaining analyses and arguments in all these publications are largely validated; e.g.,
validated is the argument that the speci"cally de"ned measure of the damping that is
provided to the host master oscillator by a distribution of nearly lossless oscillators, is
independent of the loss factors that account for the dampings in these oscillators. The loss
factors, in turn, are de"ned in terms of associated modal overlap parameters. The
independence of the induced damping in the master oscillator of these loss factors, or
equivalently of the modal overlap parameters, does not, however, imply that individual loss
factors that are equal to zero are admissible without strict quali"cations. An analysis of
nearly continuous distribution of nearly undamped satellite oscillators may bring insights
into the manner by which these quali"cations can be stated. In part, these insights are
obscured in an analysis that is subjected a priori to limiting asymptotic conditions of
negligibility and continuity; notwithstanding that such impositions may require careful
consideration if apparent singular behaviors of the mechanical system are to be avoided
[4, 5]. Here it is argued that the determination of the induced loss factor is readily achieved
by inserting integration for the summation over satellite oscillators. However, such an
insertion demands the obedience of an auxiliary relationship. This relationship is
commensurate with a satis"ed modal overlap condition. A satis"ed condition of modal
overlap states that if the loss factors of the satellite oscillators are made to approach
in"nitesimal values, the number of these satellite oscillators must approach in"nity at least
at the same rate. This condition, then, precludes setting the loss factors of the satellite
oscillators equal to zero a priori and in that sense, the imposition of the descriptive adjective
&&nearly'' is meaningful. Conversely, it is asserted that ad hoc replacement of a summation by
integration renders the condition of modal overlap implicitly satis"ed. Were the condition
of modal overlap not satis"ed, the true values of the induced damping undulate, as
a function of frequency, within the distribution range of the resonance frequency of the
satellite oscillators. The undulations are suppressed by the transition from
a summation-to-an integration, i.e., a discrete-to-a continuous format of evaluation. The
excursions of these undulations must then be stated in a suitable and a de"nitive manner.
The signi"cance of these statements is that whether or not the condition of modal overlap is
satis"ed, collectively the satellite oscillators possess enough damping and, when
appropriate, high enough peaks in their responses to explain the physical presence of the
induced loss factors [4]. Then, inventing exotic mechanisms to account for the induced
damping becomes moot [5].
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2. THE FORMALISM OF A DISCRETE AND OF A CONTINUOUS
DISTRIBUTION OF RESONANCE FREQUENCIES

Consider the mechanical system comprising a master oscillator, with mass M and
sti!ness K, that is coupled to a set of satellite oscillators. This mechanical system is sketched
in Figure 1 [1}6]. The rth satellite oscillator is de"ned by a mass m

r
and a sti!ness k

r
. The

damping is assumed to be associated with the sti!ness elements

K"K
o
(1#ig
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where g
o

and g
r

are loss factors. Each of these loss factors characterizes an individual
oscillator and quanti"es the dissipation that the oscillator, in isolation, can handle when
externally driven. The linear equations of motion of the master oscillator in situ and of
a typical satellite oscillator in situ are
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respectively, where <
o
(u) and <

r
(u) are the responses of the mass M of the master oscillator

and of the mass m
r
of the rth satellite oscillator, respectively, R is the number of satellite

oscillators that are coupled with the master oscillator and P
e
(u) is the drive that is assumed

applied externally to the master oscillator; the satellite oscillators are not driven externally
[7] (cf. Figure 1). The satellite oscillators, in equations (2) and (3), are assumed uncoupled
from each other; the satellite oscillators are coupled with the master oscillator only. The
summation in equation (2) is over a set of oscillators, where, again, R is the number of
satellite oscillators in the set. From equations (2) and (3), one obtains
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The quantity x
r
de"nes the resonance frequency distribution of the satellite oscillators. It is

emphasized that in the present paper this distribution, and not the spatial distribution of the
satellite oscillators, is in reference. The satellite oscillators are attached on a single-velocity
platform; that platform constitutes the mass of the master oscillator. The velocity in the
plane of the platform is uniform so that each attached sprung mass (satellite oscillator)
perceives the same velocity at the point of attachment. Whether the spatial distribution of
the sprung masses on the platform is made to coincide with the resonance frequency



Figure 2. Resonance frequency distribution, x
r
, and normalized mass distribution, mN

r
, as functions of the

discrete r (distinct dots), and x (r) and mN (r), as functions of the continuous r (solid line curves). Number R of satellite
oscillators is twenty seven, (R"27) and mass ratio (M

s
/M) is a tenth (10~1). (a) x

r
as speci"ed in equation (9a): L,

(x
r
);**, Mx(r)N. (b) x

r
as speci"ed in equation (9b): L, (x

r
);==, Mx(r)N. (c) mN

r
as speci"ed in equation (9c): L, (mN

r
);

==, MmN (r)N. (d) mN
r
as speci"ed in equation (9d): L, (mN

r
);==, MmN (r)N.
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distribution is moot in this paper (cf. Figure 1). In some publications, variations on this
theme are implied but are not always strictly de"ned. Thus, the problem of a priori assuming
a spatially discrete distribution of satellite oscillators (sprung masses) versus a spatially
continuous distribution was brie#y discussed in reference [8]. In this reference, the satellite
oscillators all possess the same resonance frequency. In reference [6], on the other hand,
a single-coupled structure with multiple resonance frequencies is used.

It may be useful to exemplify much of the analytical processes. For this purpose, two
distinct resonance frequency distributions for the satellite oscillators; i.e.., x

r
as a function of

r, are depicted in Figure 2. In Figure 2(a) and 2(b) the resonance frequency distributions are
[5, 7]

u
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respectively, where

rN"r(R#1)~1, RM "R(R#1)~1, c(RM )"(c/2RM )((1/2). (10a)

In keeping with references [7, 5], a normalized mass distributions for the satellite
oscillators; i.e., mN

r
as a function of r, are also introduced and displayed in Figure 2. In
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Figure 2(c) and 2(d) the normalized mass distributions are
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respectively, where M
s
/M is the mass ratio of the total mass of the satellite oscillators to that

of the mass of the master oscillator. In this paper, this mass ratio is set at one-tenth;
M

s
/M"(10)~1. It is noted in this connection, that in the analysis presented in this paper,

randomly picked distributions of resonance frequencies x
r
and of masses m

r
are admissible,

as long as they are exactly and orderly speci"ed [9].
The impedance Z

o
(u), stated in equation (5), comprises the self-impedance (iuM)

[1!(y)~2(1#ig
o
)] of the master oscillator and the sum over the impedances contributed

by the satellite oscillators to which the master oscillator is coupled [7]. Typically, the
impedance (iuM) A(y, mN

r
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, g

r
) is that contributed by the rth oscillator; it is a function of
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and is a functional of the normalized mass distribution
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satellite oscillator. As equation's (1a) and (8) state, the normalizing frequency u
o

is the
resonance frequency of the master oscillator in isolation. Under the same cover, the
response<

r
(u), of the mass m

r
of the rth satellite oscillator, is related to the response<

o
(u), of

the mass M of the master oscillator, by a factor that is a function of the normalized
frequency y"(u/u

o
) and is a functional of two of the three parameters; namely, of x

r
and g

r
.

The relationship between <
r
(u) and <

o
(u) is stated in equation (4).

Clearly r is a discrete variable. Can an arti,cially assigned r set to be a continuous
variable? This proposed continuity of r is exempli"ed by the solid-line curves in Figure 2. It
is convenient, in this connection, to normalize (scale) the continuous variable r by the
number of satellite oscillators R plus unity 1, as suggested by equations (9) and (10). The
normalized r is designated rN and the dependent parameters are then expressed in the forms

mN
r
NmN (rN ), x

r
Nx (rN ), g

r
Ng(rN ). (11)

The scaled forms of x
r
, namely, x (rN ), in equations (9a) and (9b), are depicted as functions of

rN in Figure 3(a) and 3(b) respectively. In this vein, equations (4)}(7) may be recast, without
further ado, in the forms
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Figure 3. Resonance frequency distribution; x (rN ) or x(f) as a function of the normalized continuous variable rN or
f, respectively (cf. Figure 2, (R"27). (a) x (f) as speci"ed in equation (16a): **, Mx(rN )N or Mx (f)N. (b) x(f) as
speci"ed in equation (16b): **, Mx(rN )N or Mx(f)N.
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Nk (rN ) (R#1)~1, eN"e(R#1)~1 RM "R(R#1)~1. (10b)

The parameter eN designates the end-e!ects that are introduced in the transition from the
discrete to the continuous domains; e.g., eN"e (R#1)~1, with e+1

2
, say (cf. Figure 2).

Again, consider the mechanical system comprising of a master oscillator, with mass
M and sti!ness K, that is coupled with a set of satellite oscillators, as de"ned in equation (1)
and sketched in Figure 1. However, now the resonance frequencies Mu(f)N of the satellite
oscillators are assumed to be a priori continuously, but not necessarily uniformly
distributed in the interval 0(f(1 [5]. Example of two typical resonance frequency
distributions; i.e., x (f) as functions of f, are depicted in Figure 3. In Figure 3(a) and (3b) the
normalized resonance frequency distributions are
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u(f)/u
o
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respectively, and c(RM ) is de"ned in equation (10) [5, 7] (cf. equations (9a) and (9b),
respectively, and equation (10)). The corresponding normalized mass distributions k (f) of
the satellite oscillators are [5, 7]

k (f)"(M
s
/M) (RM )~1, 0(f(1, (16c)

k(f)"(M
s
/M) (2/n) [(1!f)2#(f)2]~1, 0(f(1, (16d)

(cf. equations (9c) and (9d), respectively, and equation (10).) The linear equations of motion
of the master oscillator in situ and of a typical satellite oscillator in situ are
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A question arises: under what conditions can the linear equations (4)} (7) be
asymptotically circumvented into the linear equations (12)}(15) and equations (12)}(15) into
the linear equations (17)}(20), respectively, and are these conditions signi"cant? This
question has been partially answered in previous publications; in this paper, a more
de"nitive answer is sought [2, 7]. However, prior to this pursuit, one may inquire: suppose
these asymptotic circumventions were found permissible as these are stated, can one
perform the integration in the continuous domain that, in fact, replaces the summation in
the discrete domain?

3. EVALUATION OF THE INDUCED LOSS FACTOR g
s
(y) IN EQUATIONS (13)}(15)

The following quantities are de"ned "rst:
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Were the factor [ f (rN )k (rN )] to be a well-behaved function of rN in the range eN(rN(RM #eN and
were g (rN ) to be small compared with unity, as a function of rN in that same range, the integral
in equation (23) immediately yields the result

g
s
(y)"(n/2)(y)3[ f (rN

o
)k ((rN

o
)], z(rN

o
)"1, (eN )(rN

o
((RM #eN ), (24)

which, clearly, is independent of g(rN ) provided these loss factors are set small compared with
unity in the range (eN )(rN(RM #eN [2]. Employing the normalized resonance frequency
distributions stated in equations (9a) and (9b), one "nds

f (rN
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)"[c (RM ) (y)3]~1, [1#(c/2)]~(1@2)(y([1!(c/2)]~(1@2), (25a)
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o
)"(1#y)~2, (2R#1)~1(y((2R#1), (25b)

respectively, where c is de"ned in equation (10) and is chosen, herein, to be equal to 0)6.
Similarly, employing the normalized mass distributions stated in equations (9c) and (9d),
one "nds
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o
((RM #eN ), (25c)
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o
)N (M

s
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o
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Figure 4. Induced loss factor g
s
(y), as a function of the normalized frequency y, resulting from ad hoc

replacement of a summation by an integration (R"27, (M
s
/M)"10~1). (a) For a normalized resonance frequency

x
r

and a normalized mass distribution mN
r

as speci"ed in equations (9a) and (9c) respectively: **, within
permissible limits; - - - - - -, beyond permissible limits. (b) For a normalized resonance frequency x

r
and

a normalized mass distribution mN
r
as speci"ed in equations (9b) and (9d) respectively: **, within permissible

limits; - - - - - -, beyond permissible limits.
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From equations (24) and (25) one readily derives, for the two examples herein considered,
the results

g
s
(y)"(M

s
/M) [n/M2c(RM )N], [1#(c/2)]~(1@2)(y([1!(c/2)]~(1@2), (26a)

g
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/M) (y)3[1#(y)2]~1, [(2R#1)]~1(y([(2R#1)]. (26b)

It is recognized that g
s
(y) is largely meaningful only at and in the vicinity of y equal to unity,

y+1, so that the restricted range of y in equation (26) is not physically signi"cant. For the
two examples, stated in equations (26a) and (26b), g

s
(y) is displayed in Figure 4(a) and (4b)

respectively. The dashed-line curves in these "gures are merely free extrapolations beyond
the permissible ranges.

Since it emerges that g
s
(y) is independent of the loss factors g (rN ), provided g (rN )@1 in the

range (eN )(rN((RM #eN ), these loss factors of the satellite oscillators may, indeed, be set equal
to zero and nobody would be the wiser. Is that true?

Finally, it is remarked that the di!erence between the induced loss factor g
s
(y), stated in

equation (14), and gc
s
(y) stated in equation (19), is the number R of satellite oscillators.

Clearly, equation (19) can be derived from equation (14) by allowing R to increase enough to
render (RM #eN )P1 and (eN )P0.

4. MODAL OVERLAP CONDITION FOR RELATING THE DISCRETE
AND THE CONTINUOUS DOMAINS

To establish the relationship between the discrete and the continuous domains one may
de"ne two distinct frequency bands. The "rst, designated (du

r
), de"nes the fair frequency

territory occupied by each satellite oscillator with respect to its adjacent neighbors; this
frequency bandwidth is centered on the resonance frequency of that satellite oscillator. The
expression for this bandwidth is
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where; (a) is the usual unit step function and e is less than unity, say equal to 1
2
, again. The

inverse of the frequency bandwidth du
r
is commonly referred to as the modal density n

r
of

the satellite oscillators; i.e.,

n
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r
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where the inversion of du
r
is carefully executed with respect to the unit step functions [10,

11]. The second frequency band, designated Du
r
, de"nes the inherent frequency bandwidth

of the rth satellite oscillator; this bandwidth accounts for the inherent damping of this
satellite oscillator. The measure of the damping, in turn, de"nes the loss factor g

r
. The

bandwidth Du
r
is then stated in terms of the loss factor g

r
and the resonance frequency u

r
in

the form

Du
r
"(u

r
g
r
); (r!e);(R#e!r). (27b)



Figure 5. Induced loss factor g
s
(y), as a function of the normalized frequency y, for a modal overlap parameter

b
r
that is less than unity, b

r
+(10)~1 (R"27, (M

s
/M)"10~1). (a) For a normalized resonance frequency x

r
and

a normalized mass distribution mN
r

as speci"ed in equations (9a) and (9c) respectively. (b) For a normalized
resonance frequency x

r
and a normalized mass distribution mN

r
as speci"ed in equations (9b) and (9d) respectively.
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The ratio b
r
of these two frequency bandwidths de"nes a modal overlap parameter

Mb
r
"(Du

r
/du

r
)"(n

r
u

r
g
r
)N;(r!e);(R#e!r), (29)

where use is made of equations (27) and (28).
For a modal overlap parameter b

r
that is less than unity, b

r
(1, adjacent satellite

oscillators reside outside each other's bandwidths. Consequently, the in#uence of the
satellite oscillators on the response of the master oscillator, as a function of y, y"(u/u

o
),

can be identi"ed individually; each contribution associated with a satellite oscillator stands
out prominently from others. An example of such an in#uence in terms of evaluating the
induced loss factor g

s
(y), as a function of y with b

r
less than unity, is depicted in Figure 5 [5,

7]. On the other hand, for a modal overlap parameter b
r
that exceeds the value of unity,

b
r
'1, adjacent satellite oscillators reside within each other's bandwidths. Therefore, their

in#uence on the response of the master oscillator is largely continuous as a function of (y),
y"(u/u

o
). The more the modal overlap parameter b

r
exceeds the value of unity, the more

the continuity [7]. An example of such an in#uence, in terms of evaluating the induced loss
factor g

s
(y), as a function of y with b

r
exceeding unity, is depicted in Figure 6 [5, 7].

Comparing Figure 4 with Figures 5 and 6, respectively, serves to expose the issue that is
central to this paper. Figure 4(a) and 4(b), respectively, overlap prime portions of Figure 6(a)
and 6(b) only. These prime portions are de"ned within the range set on y in equations (26a)
and (26b) respectively. No such overlap exists between Figure 4(a) and 4(b) and Figure 5(a)
and 5(b) respectively. Nonetheless, if the undulations in Figure 5 are appropriately



Figure 6. Induced loss factor g
s
(y), as a function of the normalized frequency y, for a modal overlap parameter

b
r
that exceeds unity, b

r
+2 (R"27, (M

s
/M)"10~1). For a normalized resonance frequency x

r
and a normalized

mass distribution mN
r

as speci"ed (a) in equations (9a) and (9c) respectively. (b) For a normalized resonance
frequency x

r
and a normalized mass distribution mN

r
as speci"ed in equations (9b) and (9d) respectively.
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averaged, the overlap between Figures 4 and 6 is extended to include the mean values of
Figure 5 [7, 12] (cf. Appendix A). When b

r
becomes small compared with unity the mean

values alone do not re#ect the presence of undulations and, therefore, Figure 4 cannot serve
to substitute for Figure 5. The information that lies in Figure 5 can hardly be derived from
Figure 4; Figure 4 is akin to Figure 6 but not to Figure 5. Since Figure 4 is derived by
replacing the summation by integration, it is concluded that this replacement is
commensurate with the imposition of modal overlap parameters that exceed unity, b

r
'1

(cf. Appendix A). An imposition of this kind ensures that the evaluations of mean-value data
do not conceal information that may render the data, at best, ambiguous and, at worst,
misleading [13].

When the modal overlap parameter b
r
exceeds unity, the modal overlap condition is said to

be satis"ed. When the modal overlap condition is satis"ed, the linear dynamic description
[S(y)!ig

s
(y)], comprising the sum of the individual linear dynamic descriptions of all the

satellite oscillators; e.g., typically the term [(y)2A(y, mN
r
, x

r
, g

r
)] contributed to the sum by

the rth satellite oscillator, may be, well nigh, evaluated by integration:

[s (y)!ig
s
(y)]"(y)2

R
+
1

A (y, mN
r
, x

r
, g

r
)N(y)2 P

(R`e)

(e)
dr AMy, mN (r), x(r), g (r)N, (30a)

where r in the second of equation (30a), is a continuous and dimensionless variable [2] (cf.
equations (6) and (14a)). It is emphasized that the transition, described in equation (30a), is
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validated if, and only if, it is implicitly understood that b
r
, as stated in equation (29), exceeds

unity, namely

Mb
r
"(n

r
u

r
g
r
)'1N;(r!e); (R#e!r). (31a)

The assignment of continuity to r, in equation (30a), renders the normalized resonance
frequency x

r
Nx (r) a continuous function of (r), as exempli"ed in Figure 2(a) and 2(b) [14].

Similarly, mN
r
NmN (r) and g

r
Ng (r) (cf. Figure 2(c) and 2(d)). In this rendering, equations (27a)

and (27b) may be approximated, by smoothing, in the forms

n(r)"[du(r)]~1+[Lu(r)/Lr]~1, Du (r)"u(r)g (r), (e)(r((R#e), (32a, b)

respectively, where one recognizes that [Lu(r)/Lr] is, by de"nition, a positive quantity and
equation (28) is referenced. From equation (22), one "nds that

[Lu(r)/Lr],[(R#1) f (rN )/u
0
]~1. (32c)

Equation (31a) may then be expressed in the form

M(R#1)g (rN )"[b(rN )][L lnMx(rN )N/LrN ]N;(rN!eN ); (RM #eN!rN ), (31b)

where, again, eN"e(R#1)~1, RM "R(R#1)~1, and rN"r (R#1)~1. The so normalized
continuous r may be further designated f and hence, in that vein, equations (31) and (32) are
to be recast with rNP(f); e.g., in this normalization equation (31b) is written in the form

M([R#1)g(f)]"[b(f)] [L lnMu(f)N/Lf]N;(f!eN ); (RM #eN!f), (31c)

where

f"r(R#1)~1, eN"e (R#1)~1, RM "R(R#1)~1. (33a)

The scaling is illustrated in Figure 3 for the examples depicted in Figure 2(a) and 2(b)
(cf. equations (9) and (16)). Employing this scaling in equation (30a), one obtains

[s(y)!ig
s
(y)]"(y)2 P

(R`e)

(e)
dr AMy, mN (r), x(r), g (r)N

N(y)2 P
(RM `e6 )

(e6 )
dfAMy, k (f), x (f), g(f)N, (30b)

where f and eN are de"ned in equation (33a) (cf. equations (10) and (14)). If one further
assumes that the number R of the satellite oscillators is large compared with unity, equation
(30b) becomes

[s(y)!ig
s
(y)]N(y)2 P

1

0

df AMy, k (f), x(f), g (f)N"[sc (y)!igc
s
(y)], (30c)

where [sc(y)!igc
s
(y)] is de"ned in equation (19) and it follows from equation (33a) that

eNP0, (RM #eN )P1, RM P1, as RA'1. (33b)



Figure 7. Lower limit imposed on the value of the quantity [(R#1)g(f)], as a function of f, in order to just
satisfy the modal overlap condition; i.e., b

r
+1, thereby just permitting, without quali"cation, for an integration to

replace a summation (cf. Figures 5 and 6), (R"27). For a resonance frequency distribution as stated in (a)
equation (16a), (b) equation (16b).
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The quantity [L lnMu (f)N/Lf],[L ln(Mx (f)N/Lf], in equation (31c), is the local slope in
"gures of which Figure 3(a) and 3(b) serve as two speci"c examples [14]. It is noted that
equation (31c) may be cast in the alternate form as

Mg (r)"b(r) [L lnMu(r)N/Lr],b (r) [L lnMx(r)N/Lr]N; (r!e); (R#e!r). (31d)

In equation (31d), the local slope is that of curves like those exempli"ed in Figure 2(a) and
2(b) for the continuous r [14]. Again, it is emphasized that the relationship between Figure
2(a) and 2(b) and Figure 3(a) and 3(b), respectively, is merely the scale factor (R#1). In that
sense equation (31c) is merely the normalized version of equation (31d) and, as such, the
former is to be preferred when comparing situations of varying numbers of satellite
oscillators [5]. Using equation (9) for example and equations (31) and (33) for guidance, the
modal overlap equations yield for the two examples

G[R#1)g(f)]"[b (f)] G
[c(RM )Mx(f)N2]
[f (1!f)]~1 HH; (f!eN );(RM #eN!f), (34a,b)

where in the case of equation (34a) it is recognized that

[x (f)]~2"[1#(1!2f)c(RM )], c (RM )"(c/2RM )((1/2), (35)

(cf. equation (16a)). Equations (34a) and (34b) are depicted graphically in Figure 7(a) and
7(b) respectively. These equations and "gures exemplify that g (f) cannot be independently



730 G. MAIDANIK
set equal to zero without quali"cation. The lower limit that can be assigned to g(f) is
dependent on the number R of satellite oscillators plus unity. The value of (R#1)g(f) may
be large or small compared with unity, but it must remain "nite if equations (30b) and (30c)
are to be validated. The only way to allow for in"nitesimal g(f)'s; i.e., nearly undamped
satellite oscillators, is to explicitly or implicitly render (R#1)~1 proportionately
in"nitesimal. In particular, the number of satellite oscillators needs to approach in"nity at
least at the same rate that g (f) approaches in"nitesimal values. Thus, once the modal
overlap condition is satis"ed, the satellite oscillators collectively, and without further
quali"cations, possess enough damping to account for the physical presence of the induced
loss factor. On the other hand, when the modal overlap condition is not satis"ed, averaging
the undulations in the induced damping yields values that match those obtained for
a modal overlap condition that is satis"ed. Again, indicating that the satellite oscillators
posseses enough damping to account for the physical presence of the induced loss factor [4].
This convergence of the undulations does not, however, license one to cavalierly introduce
vanishing loss factors; the convergence may be conditional or may be misinterpreted [5].
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APPENDIX A: A FEW ADDITIONAL REMARKS

In a steady state analysis of the dynamic characteristics of the response of structural
complexes, many data sets are presented in terms of appropriately averaged values. Such
presentations are ultimately acceptable as long as these mean values are all the information
that is either available, sought or both. The loss factor g

s
(y) presented in Figure 6, which

pertains to a modal overlap parameter b
r
that is equal to two, b

r
"2, simultaneously "ts the

two categories. On the other hand, the loss factor g
s
(y) depicted in Figure 5, which pertains

to a modal overlap parameter b
r
that is equal to one-tenth, b

r
"10~1, does not meet either

categories. Figure 4, however, cast the data in Figure 5 in terms of mean values, thus
meeting the availability category only; the data sought may demand some form of
accounting for the undulations. The undulations are excursions in the values of g

s
(y), as

a function of the normalized frequency y, between resonance peaks and anti-resonance
nadirs. Since the size of the excursions are determined by the modal overlap parameter b

r
,

can a measure of the undulations be devised as a function of this parameter? It is noted that
the smaller the modal overlap parameters are compared with unity, the larger the
excursions are. One is reminded in this connection, however, that to a "rst order of
approximation results obtained from averaging the undulations; e.g., the appropriately
averaged values in Figure 5, as well as the results obtained by performing the integration in
equation (23), e.g., the data depicted in Figure 4, are found to be independent of the
individual loss factors of the satellite oscillators [1}7]. Therefore, to that approximation the
mean values also lack dependence on the modal overlap parameter b

r
; e.g., although there is

no demand for equal values of this parameter, there is an overlap between Figures 4 and 6.
On the other hand, although the values of the modal overlap parameters may be identical in
Figures 4 and 5, there is no overlap between prime regions in these "gures, except in
a quali"ed sense. Indeed, when mean values only are to be reported, to avoid &&a tail wagging
a dog'', it is to be assumed that the modal overlap parameters are set in excess of unity,
unless they are otherwise speci"cally stated [13]. Again, when values are derived by
appropriately averaging undulating data, the value of the modal overlap parameter b

r
must

accompany the speci"cation of these data; e.g., when Figure 4 is meant to represent the
mean values of Figure 5, the modal overlap parameter b

r
must be stated as one-tenth,

b
r
"10~1. Otherwise, Figure 4 is meant to represent Figure 6 (for which b

r
"2) and not, at

all, Figure 5.
In this connection, it transpires that the "rst order approximation just discussed is better

the larger the number R of the satellite oscillators and the closer the modal overlap
parameter b

r
is to unity. Indeed, for low values of R and for large values of b

r
, erosions may

beset the exact data obtained via the summation in equation (6) [7]. Such simultaneous
decreases in the number of satellite oscillators and increases in the modal overlap
parameters may not only render the exact data dependent on these quantities, but may also
violate the requirement that the contributions to the integral be dominated by the
resonances in the integrand (cf. equations (23) and (24)). Reference [7] suggests that to
ensure a "rst order approximation that is free of erosions one must require that
bM
r
"[b

r
(R#1)~1]@1 [15]. On the other hand, equation (31a) suggests that to ensure that

mean values are the prime data, b
r
must exceed unity, b

r
'1.


	1. INTRODUCTION
	Figure 1

	2. THE FORMALISM OF A DISCRETE AND OF A CONTINUOUS DISTRIBUTION OF RESONANCE FREQUENCIES
	Figure 2
	Figure 3

	3. EVALUATION OF THE INDUCED LOSS FACTOR ns (y) IN EQUATIONS (13)-(15)
	Figure 4

	4. MODAL OVERLAP CONDITION FOR RELATING THE DISCRETE AND THE CONTINUOUS DOMAINS
	Figure 5
	Figure 6
	Figure 7

	ACKNOWLEDGMENT
	REFERENCES
	APPENDIX A: A FEW ADDITIONAL REMARKS

